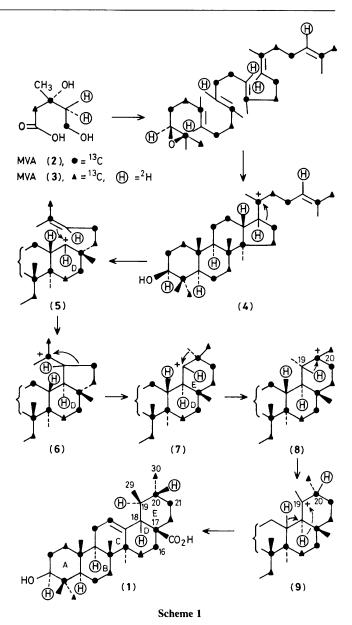
Biosynthesis of Ursolic Acid in Cell Cultures of *Perilla frutescens* Britt. var. *acuta* Kuda: Mechanism of D- and E-ring Formation

Yutaka Tomita*, Miwako Arata, and Yasumasa Ikeshiro

Department of Pharmacognosy and Phytochemistry, Niigata College of Pharmacy, 5829 Kamishinei-cho, Niigata 950–21, Japan


¹³C N.m.r. analysis of ursolic acid produced by cultivation of *Perilla frutescens* Britt. var. *acuta* Kudo in the presence of $[3,5-^{13}C_2]$ - and $[4-^{2}H_2,2-^{13}C]$ -mevalonolactone verified two backbone rearrangements and a 1,2-hydride shift with regard to formation of the D- and E-ring during biosynthesis of ursolic acid.

Ursolic acid (1) together with oleanolic acid is widely distributed throughout the plant kingdom. Ruzicka, Eschenmoser, Jeger, and Arigoni postulated a 'biogenetic isoprene rule' for the biosynthesis of terpenoids including oleaneneand ursene-type triterpenes.¹ The hypothesis for these pentacyclic triterpenes involves a series of Wagner-Meerwein rearrangements during the formation of the D- and E-ring systems from the cyclization intermediate (4) of 2,3oxidosqualene (Scheme 1). It has been demonstrated that the ¹³C-labelling patterns, in the proton noise decoupled ${}^{13}C{}^{1}H$ n.m.r. spectra of oleanene- and ursene-type triterpenes biosynthesized from [4-13C]mevalonolactone (MVA) and $[1,2^{-13}C_2]$ acetate respectively, were consistent with Ruzicka's hypothesis.^{2,3} Hydride shifts, in the biosynthesis of the oleanene-type triterpene β -amyrin, have previously been verified⁴ but this has not been demonstrated in the case of ursene-type triterpenes owing to the difficulty involved in chemically degrading these molecules. In the present paper, we report more definitive evidence for the mechanism of pand E-ring formation involving backbone rearrangements and hydride-shifts in the biosynthesis of ursolic acid.

Cell cultures of Perilla frutescens Britt. var. acuta Kudo were grown in Linsmaier-Skoog liquid medium. [3,5-13C2]-MVA (2) was prepared from [3-13C]-1,1-dimethoxybutan-3-one and ethyl [1-13C]acetate.⁵ A solution of (2) 0.3 g (ca. 90% ¹³C) in 50% ethanol (15 ml) was distributed among 15 bottles containing cell cultures of P. frutescens (100 ml \times 15). Cells were harvested after two weeks and extracted with methanol. Ursolic acid was obtained by preparative t.l.c. as described previously.³ The ${}^{13}C{}^{1}H{}$ n.m.r. spectrum of its methyl ester was then compared to enriched and unenriched samples. The resulting spectrum, overlapping with the naturally abundant ¹³C spectrum, clearly showed that the signals of eight carbon atoms, C-2, -4, -6, -8, -10, -11, -12, and -14 were singlets and enriched about twofold, while the signals of four carbon atoms, C-16, -17, -20, and -21 were doublets, being those derived from both the C-3 and C-5 of MVA.[†] The ¹³C-double labelling patterns, in particular the appearance of these doublet signals, arising from ¹³C-¹³C couplings, proved that the biosynthesis of the D- and E-ring systems proceeds along the route $(4) \rightarrow (5) \rightarrow (6) \rightarrow (7)$ postulated earlier.

Staunton⁶ previously reported an application of deuteriumisotope shifts in ¹³C n.m.r. spectra for detecting and quantifying the biosynthetic incorporation of deuterium, and Simpson *et al.*⁷ recently showed that β -isotope shifts are additive and moreover are dependent on the stereospecificity of labelling.

We applied this method to a study of the hydride shift with regard to formation of the E-ring in the biosynthesis of ursolic

acid. $[4-{}^{2}H_{2},2-{}^{13}C]MVA$, (3) (*ca.* 90% ${}^{13}C$; 90% ${}^{2}H$) prepared from $[2-{}^{2}H]$ -1,1-dimethoxybutan-3-one⁸ and ethyl $[2-{}^{13}C]$ acetate, was distributed among 10 bottles containing cultures of *P. frutescens* and ursolic acid was then isolated in the same manner. The resulting ${}^{13}C{}^{1}H$ n.m.r. spectrum of its methyl ester clearly showed that the signals of five carbon atoms, C-1, -8, -15, -22, and -23 were enriched about twofold, while the signal of the C-30 methyl group (δ 21.187) derived from the C-2 of MVA was not enriched but accompanied by an

^{† 13}C{¹H} N.m.r. data (50.10 MHz, [²H₅]pyridine): δ_{C} 28.12 (s, C-2), 40.06 (s, C-4), 18.85 (s, C-6), 39.41 (s, C-8), 37.34(s, C-10), 23.67 (s, C-11), 125.71 (s, C-12), 42.57 (s, C-14), 24.96 [d, C-16, ¹J(¹³C-¹³C) 35 Hz], 48.11 [d, C-17, ¹J(¹³C-¹³C) 35 Hz], 39.41 [d, C-20, ¹J(¹³C-¹³C) 35 Hz], 31.11 [d, C-21, ¹J(¹³C-¹³C) 35 Hz].

Figure 1. Signal of C-30 methyl group from 50.10 MHz ${}^{13}C{}^{1}H$ n.m.r. spectrum of methyl ursolate derived from [4- ${}^{2}H_{2}$,2- ${}^{13}C$]mevalonolactone (in CDCl₃).

isotopically shifted signal ($\delta - 0.123$ p.p.m.) owing to the presence of an axial deuterium on the adjacent carbon atom, C-20 (Figure 1). Moreover, the high incorporation level of the

deuterium indicates that the hydride-shift occurs in the same MVA molecule incorporated, a fact which therefore shows that the deuterium on C-20 had migrated from the C-19 derived from the C-4 of MVA as shown in Scheme 1 (8) \rightarrow (9). These results confirm Ruzickas 'biogenetic isoprene rule' hypothesis as applied to the formation of the D- and E-ring during the biosynthesis of ursolic acid.

Received, 1st May 1985; Com. 588

References

- L. Ruzicka, Proc. Chem. Soc., 1959, 341; A. Eschenmoser, L. Ruzicka, O. Jeger, and D. Arigoni, Helv. Chim. Acta, 1955, 38, 1890.
- 2 S. Seo, Y. Tomita, and K. Tori, J. Chem. Soc., Chem. Commun., 1975, 270; S. Seo, Y. Tomita, and K. Tori, *ibid.*, 1975, 954.
- 3 S. Seo, Y. Tomita, and Y. Tori, J. Am. Chem. Soc., 1981, 103, 2075.
- 4 H. H. Rees, E. I. Mercer, and T. W. Goodwin, *Biochem. J.*, 1966, 99, 726; H. H. Rees, E. I. Mercer, and T. W. Goodwin, *ibid.*, 1968, 106, 659.
- 5 A. Lawson, W. T. Colwell, J. I. Degraw, R. H. Peters, R. L. Dehn, and M. Tanabe, *Synthesis*, 1975, 729.
- 6 C. Abel and J. Staunton, J. Chem. Soc., Chem. Commun., 1981, 856.
- 7 T. J. Simpson and D. J. Stenzel, J. Chem. Soc., Chem. Commun., 1982, 1074.
- 8 H. G. Floss, M. Tcheng-Lin, C. Chang, B. Naidoo, G. E. Blair, C. I. Abov-Chaar, and J. M. Cassady, J. Am. Chem. Soc., 1976, 96, 1898.